
When do Armed Revolts Succeed: Lessons

from Lanchester Theory

Michael P. Atkinson 1, Alexander Gutfraind 2, Moshe Kress 1

Abstract

Major revolts have recently erupted in parts of the Middle East with substantial inter-

national repercussions. Predicting, coping with and winning those revolts have become

a grave problem for many regimes and for world powers. We propose a new model

of such revolts that describes their evolution by building on the classic Lanchester

theory of combat. The model accounts for the split in the population between those

loyal to the regime and those favoring the rebels. We show that, contrary to classical

Lanchesterian insights regarding traditional force-on-force engagements, the outcome

of a revolt is independent of the initial force sizes; it only depends on the fraction

of the population supporting each side and their combat effectiveness. The model’s

predictions are consistent with the situations currently observed in Afghanistan, Libya

and Syria (September 2011) and it points to how those situations might evolve.

Keywords: Conflict analysis; Defence studies; System dynamics; Population; Be-

haviour;

Introduction

Recent (2011) events in Libya underscore the significant impact of armed revolts

on regional and global interests. Armed revolts typically start with demon-

strations and civic unrest that quickly turn into local violence and then full-

scale combat. (The terms revolt, rebellion, and insurgency are interchangeable

in most senses and we use the term revolt throughout for consistency.) As

demonstrated in Libya the evolution of the armed revolt has a strong spatial

component; individuals in some regions (e.g., parts of Tripoli) may be loyal

to the regime because of ideology or economic and social incentives or fear,
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while other regions (e.g., Benghazi) become bastions of the rebels powered by

strong local popular support. Thus, armed revolts, very much like conventional

war, are about gaining and controlling populated territory. However, unlike

conventional force-on-force engagements, where the civilian population plays a

background role, armed revolts are characterized by the active role of the people,

who become a major factor in determining the outcome of the conflict: both

the rebels and the regime need the support of the population to carry out their

campaigns (Hammes, 2006; Lynn, 2005).

Armed revolts differ from civil uprisings, such as those that occurred re-

cently (2011) in Tunisia and Egypt, because uprisings are manifested in demon-

strations, which may involve some minor local violence, rather than protracted

armed engagements. Armed revolts often originate from civil uprisings and thus

our model may provide insight into the situation if the uprising is on the verge

of evolving into the more violent revolt. An example of this possible progres-

sion can be found in Syria (September 2011) where an armed revolt seems to be

emerging from a popular uprising mostly due to defections from the government

forces and some foreign supply of arms to local organizations.

Our approach to modeling armed revolts is based on Lanchester theory (Lanchester,

1916) that describes the strength of two opposing military forces by two ordinary

differential equations (ODEs). The forces cause mutual attrition that depletes

their strengths until one of the forces is defeated. While Lanchester models are

stylized and highly abstract, they have been extensively used for analysis for al-

most a century because they provide profound insights regarding conditions that

affect the outcomes of military conflicts. Examples of such analysis using Lanch-

ester models include studies of the Battle of Britain (Johnson and MacKay,

2011), the Battle of Kursk (Lucas and Turkes, 2004), the Ardennes Campaign

(Hung et al., 2005), the Battle of Iwo Jima (Engel, 1954), and the Battle of

Inchon (Hartley and Helmbold, 1995). For further information on the analy-

sis and applications of Lanchester models please refer to Washburn and Kress

(2009).

In the 1960s Deitchman (1962) and Schaffer (1968) proposed variants of the

classic Lanchester equations that more accurately model guerrilla and insur-

gent warfare. The key observation is that attrition of the guerrillas depends

not just on the government forces, but also on the size of the guerrilla force.

The smaller the guerrilla army, the more difficult it is for government forces

to target them. Later works examined more directly the role of the popula-

tion in insurgency conflicts. Intriligator and Brito (1988) explicitly modeled



October 12, 2011 3

the level of popular support for the insurgents with an additional state variable.

McCormick and Giordano (2002) considered only two state variables but intro-

duced terms that allow the government and insurgents to increase in strength

based on popular support. Kress and Szechtman (2009) analyzed the impact of

the population by focusing on how collateral damage and intelligence alter the

dynamics. Blank et al. (2008) used Lanchester techniques to study Operation

Iraqi Freedom.

Here we also examine a conflict between two forces where the population

plays an important role. However, unlike the traditional Lanchester models

used by the previously cited works, our focus is not on attrition but on the con-

trol of friendly and hostile territories. Using our model, we derive the end-state

of the revolt, identify stalemate situations and study the effects of foreign inter-

vention and of inconstant support by the population. We show that contrary

to classical Lanchesterian insights regarding traditional force-on-force engage-

ments, the outcome of a revolt is independent of the initial force sizes. We also

derive conditions for successful foreign interventions.

The main contribution of our model is methodological – extending the clas-

sical Lanchester theory to armed revolts where the population is a key player.

While we dare to make some predictions (about Syria), this is not the main

objective of our work. Similarly to classical Lanchester models, our model is

not predictive; it is descriptive and, at best, diagnostic. Its purpose is to gain

insights about cause-and-effect relations. The main reason for this restrictive

objective is the lack of relevant and reliable data. Having said that, using the

little data available we note that the results of the model are consistent with

the situations currently (September 2011) observed in Afghanistan, Libya and

Syria. We also evaluate policy options facing the international community.

Setting and Assumptions

Consider an armed revolt involving two forces, termed Red and Blue, that rely

on the population for manpower, intelligence, and most other resources. In most

situations one of these forces will be in the position of power (e.g., the govern-

ment forces) and may hold an advantage. We assume a polarized situation

where there are no neutrals in the population, which is divided into supporters

of Blue, called henceforth supporters, and supporters of Red, called henceforth

contrarians. We initially assume that the support strongly depends on factors

such as tribal affiliation, social class, and ideology and therefore remains un-
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changed during the armed revolt. However, later on we relax this assumption

and allow for changes in popular behavior, reflecting pragmatic and opportunis-

tic responses of the population to changes in the force balance.

We assume that the country is divided between Red and Blue and therefore

a populated region lost by one force is gained by the other force. Independent or

neutral regions are not considered because individuals in these areas will often

become entangled in the conflict, even if they initially do not want to, and will

eventually support one of the sides. We also assume that the population in each

region is homogeneous – either supporters or contrarians. This assumption

is reasonable if the resolution of the regions is high enough, and is valid in

particular in tribal societies where members of a clan closely follow their leader.

A force that fights over a region might be either supported or opposed by the

local population, situations which we call liberation or subjugation, respectively.

A liberating force fights more effectively than a subjugating force because of

population support, ceteris paribus. Moreover, the forces in control of hostile

regions are busy policing the population and therefore adopt a defensive pos-

ture. Thus, only the forces operating in friendly regions proactively attempt to

capture additional territories.

Model

Let S and C (S + C = 1) denote the fraction of the total population who are

supporters of Blue and supporters of Red (“contrarians”), respectively. Let

also B and R (B + R = 1) denote the fraction of the population controlled

by Blue and Red, respectively. We use the notation XY for the fraction of

population X that is controlled by force Y , where X = S,C and Y = B,R.

Hence, SB + SR = S and CB + CR = C. The offensive strengths of the Blue

and Red combatants are proportional to SB and CR, respectively. When Blue

subjugates a CR region it becomes part of CB and when Blue liberates an SR

area it becomes part of SB. Similar actions are possible by Red, giving a total of

four kinds of combat engagements, as shown in Figure 1. We implicitly assume

that the country can be divided into areas or regions of sufficiently small size

so that each one can be viewed as a homogeneous group of people belonging to

one of the four types.

Because Red and Blue operate in populated areas, the outcome of an en-

gagement depends both on the strength of the attacking force but also on the

signature (i.e. visibility) of the defending force; smaller attack force (“fewer
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shooters”) or smaller signature (“fewer targets”) result in a smaller gain/loss

rate. Namely, at each interaction, the gain rate of the attacker is given by a scal-

ing constant, called henceforth attrition rate, multiplied by the product of the

attacking and defending force sizes. This relationship implies that even a large

attacker would struggle to find and suppress a small defender (or insurgent)

diffused in the population. The resulting model is an adaptation of the Lanch-

ester Linear Law (see e.g., Washburn and Kress (2009) p. 83) and Deitchman’s

guerrilla warfare model (Deitchman, 1962).

SB

CBCR

SR
S population

C population

Liberated

population

Subjugated

population

Liberation

Subjugation

Military force

Fig. 1: Schematic dynamics of the model. The four variables in the model ap-
pear as boxes, where each box represents a possible combination of pop-
ulation behavior and controlling force. Solid lines indicate change in
control of population while dashed lines indicate the force causing it.
Observe that the population does not change allegiances even under oc-
cupation.

The attrition rate constants depend on the tactics, technology, and equip-

ment of the parties. Thus if one of the sides represents the government, which

will have an initial advantage in many of these categories, these attrition rates

will capture this advantage. The attrition rates, however, also depend upon the

behavior of the population. Thus, let fS and fC denote the rates of liberation of

friendly regions by Blue and Red forces, respectively. Similarly, let hC and hS

denote the rates of subjugation of hostile regions by Blue and Red, respectively.
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The resulting dynamics is given in Eqs. 1.

SB′ = +fSSB · SR− hSCR · SB

SR′ = −fSSB · SR+ hSCR · SB (1)

CR′ = +fCCR · CB − hCSB · CR

CB′ = −fCCR · CB + hCSB · CR

Since it is easier to fight in friendly territory, we make the following dominance

assumption:

fS > hC and fC > hS . (2)

End-State of the Revolt

From solving Eqs. 1 we obtain that the conflict can result in one of three out-

comes, corresponding to the stable equilibrium points of the equations:

1. Blue victory: SB + CB = 1,

2. Red victory: CR+ SR = 1,

3. Stalemate: Both sides control a fraction of the total population.

It can be shown that the evolution of the conflict does not involve cycles

where populated regions change sides endlessly; rather, the conflict dissipates

and reaches a stable state. Proofs of this and all other results are given in the

Appendix at the end of this article.

The stable outcomes are not dependent on all four attrition rates but rather

on two ratios: rS = fS
hS

and rC = fC
hC

. We call these the “liberation-subjugation

effectiveness

ratio” (LSER) of supporters and contrarians, respectively. These ratios ac-

count for differences in tactics, technology, and information between Blue and

Red, and also reflect the ability and commitment of the local population to

support its preferred force. The outcomes are:

Blue wins if and only if rC <
S

1− S
(3)

Red wins if and only if rS <
1− S

S
(4)

Stalemate occurs otherwise.
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Fig. 2: Outcomes of the conflict when S = 40% as a function of rS and rC . (A)
The possible outcomes are: stalemate (gray), Red victory (red) and Blue
victory (blue). The white area is excluded by the dominance assumption
(Ineqs. 2). Outright victory is possible only when one party has a low
LSER. Increasing rS and rC makes both parties much more entrenched
in their areas, leading to a stalemate regardless of the value of S. (B)
The amount of territory controlled by Blue. Observe that a very sharp
change in the outcome is predicted as rC approaches 2

3
, from a balanced

stalemate to a Blue victory.

These results4 are summarized in Figure 2A. It follows from Ineqs. 3–4 that

the fate of the armed revolt is completely determined by the LSERs and the

population split between supporters S and contrarians C = 1 − S; it does not

depend on the initial sizes of the Blue and Red forces. Moreover, the minimum

popular support needed to guarantee Blue’s win only depends on the LSER in

the contrarians’ territory. Specifically, Blue wins if and only if rC(1 − S) < S,

that is, if the fraction of its supporters is larger than the fraction of contrarians

times the LSER in contrarians’ territory. An equivalent statement applies for

Red victory, which happens if and only if rS(1 − C) < C. The operational

implication of these two conditions is that strengthening one’s advantage in

friendly territories (e.g., Blue increasing rS) may be sufficient to avoid defeat

but not to secure a win; if one is not effectively fighting in hostile territory (e.g.,

Blue cannot sufficiently decrease rC) then one cannot win; the best it can hope

4 Technically, we assume that at the start of the dynamics both forces have some presence
in a friendly territory, i.e. SB0 > 0 and CR0 > 0. Otherwise, one of the forces is never
challenged and wins trivially. Also, the model has a fourth equilibrium that corresponds to
the case where the territory is divided between Blue and Red who control only hostile territory
(SR + CB = 1). Obviously, such a situation is very unlikely and indeed this equilibrium is
unstable, as shown in the Appendix.
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for is a stalemate. At the stalemate equilibrium, denoted XYb

CBb =
S(1 + rS)− 1

rSrC − 1
, SRb =

rC − S(1 + rC)

rSrC − 1
, (5)

SBb = rCCBb, CRb = rSSRb.

Notice that the denominators are always positive because of the dominance

assumption (see Ineqs. 2). Eqs. 5 indicate that as S increases an increasing part

of the population is controlled by Blue. When rC increases, a larger fraction of

the contrarians is able to remain free (i.e. ruled by Red).

We plot the fraction of the population controlled by Blue during a stalemate

(i.e., CB + SB) in Figure 2B. (We only present the plot for S = 0.4, but other

values of S are qualitatively similar.) Near the Blue victory condition defined

by Ineq. 3 the fraction of the population controlled by Blue is near one, but

quickly decreases as rC increases. Similarly, the fraction of population controlled

by Blue rapidly increases as rS moves away from the Red victory condition.

However, after the significant initial change in the fraction of Blue’s regions as

rS or rC increases, the surface flattens out. As both rS and rC continue to

increase, the fraction of Blue’s regions approaches S. Therefore, when rS and

rC are reasonably bounded away from their thresholds, an entrenched stalemate

occurs where Red and Blue control primarily their friendly territories.

Extensions of the Basic model

We consider now two extensions of the basic model: the case of foreign inter-

vention and the case of shifting popular support.

Foreign Military Intervention

Most large revolts in modern times involved foreign military interventions by

regional or global powers (Sarkees and Wayman, 2010; Small and Singer, 1982).

Such interventions can be manifested in two ways: direct and indirect. Direct

intervention (e.g., air-strike support to ground units, such as the intervention

of NATO forces in Libya in 2011) allows the supported side to exercise more

firepower against its opponent. Indirect intervention provides the supported

side with force multipliers such as intelligence, training, logistical support and

advanced weapons, but no additional firepower per se. In both cases we assume

that just one side, say Blue, receives the foreign support. We leave for future
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studies to consider the case of foreign support to both sides.

Direct intervention. For simplicity, suppose that the foreign constituent is

tactically superior and it experiences negligible attrition (e.g., air support for

Blue that is subject to ineffective air defense of Red). Therefore, the effectiveness

of the foreign constituent remains fixed throughout the armed revolt. However,

similarly to the direct engagements discussed above, its ability to target Red

diminishes as the size of Red’s forces decreases. In that case, Red targets are

harder to find and engage. Let λS , λC > 0 denote the combat power of the

foreign constituent when operating in supporters’ (S) regions and contrarians’

(C) regions, respectively. The separation into two combat power parameters

allow for the possibility that the foreign constituent only contributes to certain

kinds of operations (e.g. only to liberating supporters), and/or is affected by

the behavior of the population, just like Blue. In this case Eqs. 1 become

SB′ = +fSSB · SR− hSCR · SB + λSSR

SR′ = −fSSB · SR+ hSCR · SB − λSSR (6)

CR′ = +fCCR · CB − hCSB · CR − λCCR

CB′ = −fCCR · CB + hCSB · CR + λCCR

Since the effectiveness of the foreign constituent remains unaffected, it is clear

that Red cannot win. The only two outcomes are Blue’s victory and a stalemate.

Blue wins if and only if λC > fC(1 − S) − hCS. Otherwise, the armed revolt

ends in a stalemate. Like in the basic model, the conflict dissipates and reaches

a stable state, and no cycles are possible.

An interesting observation is that the value of λS – the combat power of the

foreign constituent in friendly regions – plays no role in helping Blue achieve

victory; it only ensures that Blue will not lose as long as λS > 0. The threshold

of λC that determines Blue’s victory is the difference between two terms, each

a combination of combat effectiveness and popular support: fC(1− S) is Red’s

effectiveness fighting on friendly territory times its popular support, and hCS

is Blue’s effectiveness fighting on hostile territory times its popular support.

Clearly, this threshold decreases as the support to Blue increases. In particular,

a sufficient condition for Blue victory is λC > fC , which only depends upon

the fighting effectiveness of Red. Consequently, even if Blue has limited tactical

capabilities or a small amount of popular support, it can still prevail with enough
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assistance from a foreign constituent.

We do not consider the situation where the foreign constituent experiences

attrition. The standard example would be foreign ground troops participating

directly in combat, such as the US involvement in Vietnam. Analyzing this sce-

nario would involve defining an additional state variable for the strength of the

intervening force and modeling its dynamics (e.g., attrition and reinforcements).

Such an expanded model is beyond the scope of this paper.

Indirect intervention. Indirect intervention (force multiplier) increases the

ability of Blue to defend its territory and to attack Red forces. Specifically,

the liberation rate fS and the subjugation rate hC are multiplied by factors

µS , µC > 1, respectively, where the structure of Eqs. 1 remains unchanged. The

LSER values rS and rC change to µSrS and rC
µC

, respectively. Using the condi-

tions in Ineq. 4 we obtain that for Blue to avoid defeat it is sufficient that the

intervention be such that:

µS ≥
1− S

rSS
.

We see that if the Blue forces have low LSER, i.e. cannot hold their own

territory, they may be defeated despite assistance from their foreign backers. In

order to secure a win, it follows from Ineq. 3 that the support for Blue must be

such that

µC >
rC(1− S)

S
.

Because rSrC > 1, the threshold of µC is always larger than the threshold of

µS – it is more costly to secure a victory than to avoid a loss. Obviously, the

indirect intervention is needed to secure a victory only if S is small enough,

specifically, if S < rC
1+rC

. Note that “small enough” may actually be quite large

when Red is very effective on its own turf compared with Blue (rC is large).

Opportunistic Population

While in some conflicts the behavior of the people is highly polarized and un-

changing, in others the population might be quite opportunistic and favor the

side that appears more likely to win. It follows that the fraction of the sup-

porters, and hence contrarians, changes according to the state of the conflict.

We capture this situation by treating the fraction of supporters S as a dynamic

variable, and adding to Eqs. 1 an equation for S′. The value of S′ increases

with the fraction of population Blue controls (SB+CB) and decreases with the
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fraction controlled by Red (CR+ SR). Because C = 1− S, SR = S − SB, and

CB = 1− S − CR, we obtain from Eqs. 1 the three equations:

SB′ = +fSSB(S − SB)− hSCR · SB

CR′ = +fCCR(1− S − CR)− hCSB · CR (7)

S′ = +α(SB + 1− S − CR)(1 − S)− α(CR + S − SB)S,

where α is a parameter that determines the rate at which individuals switch

allegiances, which is assumed to be the same for both the supporters and con-

trarians. With opportunistic population there are only two potential outcomes:

1. Blue victory where the entire population supports Blue, who controls all

regions (SB = 1), and

2. Red victory where the entire population supports Red, who controls all

regions (CR = 1).

These two equilibria are stable for all parameter values. There are also two

stalemate equilibria: a balanced stalemate where SB,CR > 0, and a disarmed

stalemate where SB = CR = 0. Neither of the two stalemate equilibria are

stable. The disarmed stalemate is neither realistic nor relevant. The balanced

stalemate, given below, is more interesting because it lies on a boundary that

separates the basins of attraction for the two victory situations:

SB∗ =
rC

2 + rS + rC
, (8)

CR∗ =
rS

2 + rS + rC
, (9)

S∗ =
1 + rC

2 + rS + rC
. (10)

Thus, the stalemate equilibrium gives a rough metric for the potential outcome

of the conflict. For example, the closer the stalemate equilibrium is to the Blue

victory point, the more likely Red will win the conflict. This occurs because most

of the 3-dimensional (rS , rC , S) parameter space lies in the basin of attraction

corresponding to Red victory.

Comments on Recent Revolts

In this section we discuss several nascent and ongoing (in 2011) revolts in light of

the SBCR model above and its extensions. We have also attempted to system-
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atically validate this model empirically, but while data on armed conflicts exist

(e.g., UCDP/PRIO Armed Conflict Dataset (Themner and Wallensteen, 2011)

and Correlates of War Data (Sarkees and Wayman, 2010)), none of the data sets

includes the information necessary for us to make quantitative estimates of the

parameters, particularly the parameters rS , and rC . Thus, while we could not

compute precise estimates of the model parameters, we show that many of the

ongoing conflicts are at a state consistent with our model. The model suggests

how the outcomes might be effected by decisions including those currently on

the policy table.

Libya

The available information regarding the revolt in Libya is based mainly on

fragmented, and largely anectodal, news reports. It suggests that the conflict

has progressed through three stages: During the first stage, mid February to

mid March 2011, the rebels established local governments but then experienced

setbacks and were collapsing in the face of a regime offensive toward their base in

Benghazi (MacAskill et al., 2011). In the second stage, mid March to late April,

NATO established a no-fly zone and blocked further incursions by Qaddafi’s

forces. A stalemate developed with the rebels repelling Qaddafi’s forces and

vice versa. Finally in the third stage, from early May to September, NATO

gradually intensified its air strikes and aid to the rebels leading to rapid rebel

progress, and eventually to the fall of Tripoli.

This progression is consistent with our model, as follows. In the first stage,

Qaddafi’s forces (labeled Red) were much better trained, equipped and orga-

nized than the rebels (labeled Blue). The regime’s forces could successfully

beat the rebels even in rebel-supporting regions, suggesting that fS < hS and

fC > hC , which implies that rS < 1 and rC > 1. From Ineq. 4 and that S ≈ 40%

we learn that Qaddafi should have achieved a clear victory, crushing the revolt.

(Here we estimated S from the fact that three of the seven largest districts

in Libya – Benghazi, Misrata and Az-Zawiya – established rebel governance,

and these amount to approximately 40% of Libya’s population.) In the second

stage the foreign intervention was defensive in nature (λS > 0 and λC = 0) and

attrition to NATO forces was negligible. The model indicates that under such

conditions the rebels could no longer be defeated. The rebels were also provided

training and gear to help them repel Qaddafi’s attempts at recapturing rebelling

population, i.e. increasing the rebels’ rS but not changing rC . Thus the rebels
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remained inferior to the regime’ forces when fighting in territory controlled by

Qaddafi or supporting him. Consistent with our model, we saw a stalemate be-

cause Blue victory requires a reduction of rC to rC < S
1−S

= 2

3
(Eq. 3). Finally

in the third stage, the foreign intervention gradually began to aid the rebel of-

fensive: NATO provided weapons (decreasing rC) as well as tactical air support

(increasing λC) (Fahim and Mazzetti, 2011). The near-complete victory by the

rebels (as of September 2011) is exactly what one expects from the model when

rC is brought sufficiently low.

Afghanistan

One can view the ongoing conflict in Afghanistan (2001-) as a struggle of

government and coalition forces (Blue) against Salafists (Red) led by the Tal-

iban. Many observers of the conflict point to the critical need of both parties

to win the support of the population, so the conflict is a good application of

our model. According to the 2007 report by the International Council on Se-

curity and Development, the Taliban have permanent presence in 54% of the

country (International Council on Security and Development, 2007). Suppose,

pessimistically, that the Taliban movement has the support of all the people in

the regions where it is present. Assuming fixed behavior of the population (no

opportunistic shifts) the situation in Afghanistan will continue in its current

stalemate form unless rS < 1.17 (giving Red a victory) or rC < 0.85 (giving

Blue a victory). Thus, the model suggests that the government can avoid a

Taliban takeover of the country by nurturing the support of the population it

currently controls, and it is not necessary to push back the Taliban from their

areas.

Syria

The situation in Syria is currently (September 2011) in a state of civil unrest

rather than a full-scale armed revolt: The Syrian army and paramilitaries face

massive but largly unarmed demonstrations. If the situation does escalate into

an armed revolt, what might be its outcome? The opposition (Red) would be at

a disadvantage against the government forces (Blue), which are led by special

units of the Syrian army that possess superior tactics and weapons. Therefore,

rS is likely large and rC is likely small. Furthermore, the international commu-

nity appears less likely to become involved as compared to Libya. However, if

the opposition unites under effective leadership and initiates a strong offensive
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push (perhaps drawing in foreign intervention), then we anticipate that the As-

sad regime would face a strong challenge because of its narrow base of support

in the Alawite sect (assuming he does not enlarge his base.)

Recall that Red would be victorious against Blue if rS < 1−S
S

(Ineq. 4). As-

suming S ≈ 10% (the entire Alawite community (Central Intelligence Agency,

2009)), the government must have rS ≥ 9 in order to avoid defeat. If we assume

other minority groups (e.g., Christians and Druze) also generally support the

government (New York Times, 2011), then S ≈ 25% (Central Intelligence Agency,

2009) and to avoid defeat the the government would need just rS ≥ 3. Thus, for

the government to avoid defeat in an armed revolt, it would need to maintain

strong loyalty of its backers and/or tactical superiority. This seems unlikely:

there appears to be strong discontent even within the Alawite community and

the rebels could come to acquire military hardware from their foreign backers –

hardware such as armor-piercing munitions and air cover to neutralize govern-

ment forces. Furthermore, the currently observed (September 2011) stalemate

is partly a result of foreign intervention by Iranian and Hezbollah combatants

(Tisdall, 2011). This intervention is covert and therefore fragile. In sum, while

the current situation does not appear promising for the opposition, changes in

the domestic political climate, or the international community’s stance on in-

tervention could quickly turn the tide and lead to the defeat of Syria’s Assad

regime.

Summary and Conclusions

We present a new Lanchester-type model that represents the dynamics of lib-

erating and subjugating populated regions in the setting of an armed revolt.

We identify winning and stalemate conditions and obtain some general insights

regarding the revolt’s end state. Many revolts do not have a decisive outcome,

with both sides entrenched in a prolonged stalemate. Our model explicitly iden-

tifies this realistic outcome, which is not captured in classical Lanchester theory.

Our model also illustrates that it is not sufficient to ably control friendly regions;

for victory it is crucial to be able to effectively fight in hostile regions.

We also study the effect of foreign intervention (e.g., NATO intervention in

Libya) on the outcome of a revolt. We find that while direct intervention to

support one side will prevent defeat of that side and can facilitate a win even if

that side has very little popular support, indirect intervention cannot guarantee

this particularly when its LSER is low. The level of foreign intervention (either
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direct or indirect) required to defeat an opponent depends on the popular sup-

port (S) and the attrition coefficients (fC and hC) in the contrarians’ territory;

it does not depend on the capabilities of the forces in supporters’ regions.

Finally if the population can shift its support, then a stalemate is not pos-

sible. A bandwagon-type effect will occur where the population increases its

support to the apparent winner, which strengthens it and leads to more sup-

port, which further strengthens it and so on until the side achieves victory.

Unlike the case of fixed population behavior, the results of this scenario are

sensitive to the initial conditions.

The model we present agrees in its predictions with the views of many ana-

lysts of the ongoing conflicts. Therefore, our contribution to the current policy

debate is to make explicit the latent assumptions of previous studies. For the

future, the model (and its variants) could help to anticipate the outcomes of

different kinds of revolts.

Appendix A: Victory Conditions

In general, dynamical systems may exhibit stable oscillations. We now show

that the system of equations in Eqs. 1 does not have those oscillations (no

limit cycles). This means that the state variables will always reach one of the

equilibrium points (by the Poincaré-Bendixon Theorem (Strogatz, 2000) and

noting that the state space is bounded).

Theorem 1 (Dulac’s Criterion (Strogatz, 2000)). Let ẋ = f(x) be a smooth

system on a simply-connected set S ⊂ R
2. Let w : S → R be smooth on S.

Suppose on S the expression ∇ · (f(x)w(x)) does not change sign. Then the

system has no limit cycle on S.

Proposition 1. The system of Eqs. 1 does not have limit cycles.

Proof. We first write the model as a system of two independent equations by

removing the mixed variables:

SB′ = +fSSB(S − SB)− hSCR · SB (11)

CR′ = +fCCR(C − CR)− hCSB · CR (12)

Let

w(SB,CR) =
1

SB(S − SB)CR(C − CR)
.
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Both the system and w are smooth on the set (0, S) × (0, C) (points on the

boundary of this space move to one of the fixed points and do not oscillate.)

∇ · (fw) = ∇ ·

(

fS(S − SB)− hSCR

(S − SB)CR(C − CR)
,
fC(C − CR)− hCSB

SB(S − SB)(C − CR)

)

=
−hS

(S − SB)2(C − CR)
+

−hC

(S − SB)(C − CR)2
< 0.

We next show that the victory conditions in Ineqs. 3, 4 correspond to the

stability conditions for the equilibria points. Throughout, we assume that 0 <

S < 1, i.e. S is not on its boundary.

Theorem 2. The following four statements hold for the system of differential

equations defined by Eqs. 1:

• The equilibrium CR = SB = 0 and SR = 1− CB = S is never stable.

• The Blue victory equilibrium (CR = SR = 0 and SB = 1 − CB = S) is

stable if and only if rC < S
1−S

.

• The Red victory equilibrium (SB = CB = 0 and CR = 1− SB = 1 − S)

is stable if and only if rS < 1−S
S

.

• The stalemate equilibrium (defined by Eqs. 5)) is stable if and only if

rC ≥ S
1−S

and rS ≥ 1−S
S

.

Proof. The model is fully specified based on two variables: SB and CR, Eqs. 11-

12. We first compute the Jacobian of the right hand size of differential equation

J(SB,CR) =

(

fS(S − 2SB)− hSCR −hSSB

−hCCR fC(1 − S − 2CR)− hCSB

)

A solution (SB∗, CR∗) to the differential equation is stable if the two eigenvalues

of J(SB∗, CR∗) have negative real parts (Strogatz, 2000). By inspection the

equilibrium with SB = CR = 0 is not stable for any parameter values.

Blue Victory

The characteristic polynomial in this case is

(−fSS − λ)(fC(1− S)− hCS − λ) = 0.
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The first eigenvalue, −fSS, is always negative and the second eigenvalue, fC(1−

S)− hCS, is negative if rC < S
1−S

.

Red Victory

The characteristic polynomial in this case is

(−fC(1 − S)− λ)(fSS − hS(1− S)− λ) = 0.

The first eigenvalue, −fC(1− S), is always negative and the second eigenvalue,

fSS − hS(1 − S), is negative if rS < 1−S
S

. By the dominance assumption (i.e.,

Ineqs. 2)) rSrC > 1 and thus 1

1+rS
< rC

1+rC
. Therefore it is not possible for both

the Blue victory and Red victory to be stable equilibria for the same values of

rS and rC . This also implies that if rS < 1−S
S

a Blue victory cannot occur and

if rC < S
1−S

a Red victory cannot occur.

Stalemate

At the stalemate equilibrium, the variables have the values SBb, SRb, CRb, and

CBb. We next present a lemma, and then prove that the stalemate equilibrium is

stable if and only if 1

1+rS
< S < rC

1+rC
, which is equivalent to the two conditions

rC ≥ S
1−S

and rS ≥ 1−S
S

Lemma 1. The product SBbCRb is positive if and only if 1

1+rS
< S < rC

1+rC
.

Proof. By Eqs. 5, SBb is positive if 1

1+rS
< S, and CRb is positive if S <

rC
1+rC

. By the dominance assumption (Ineqs. 2) 1

1+rS
< rC

1+rC
, and therefore it

is impossible for SBb and CRb to both be negative.

Lemma 1 and Eqs. 5 imply that if 1

1+rS
< S < rC

1+rC
, then SBb, SRb, CRb,

and CBb are all positive (and by conservation of total population, less than 1).

The Jacobian matrix for the stalemate equilibrium is

J(SBb, CRb) =

(

−fSSBb −hSSBb

−hCCRb −fCCRb

)

We derive the upper left hand element of this Jacobian below

J11(SBb, CRb) = fS(S − 2SBb)− hSCRb

= hS(rS(S − 2SBb)− rSSRb)

= fS

(

S −
2SrC(1 + rS)− 2rC

rSrC − 1
−

rC − S(1 + rC)

rSrC − 1

)

= −fSSBb
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The lower right hand element of J(SBb, CRb) can be derived in a similar fash-

ion and we omit the details. The eigenvalues of J(SBb, CRb) will both have a

negative real component if the trace of J(SBb, CRb) is negative and the determi-

nant is positive The determinant of J(SBb, CRb) is SBbCRbhChS(rSrC − 1). If
1

1+rS
< S < rC

1+rC
, then by Lemma 1 the trace is negative and the determinant

is positive and thus the stalemate equilibrium is stable. If S /∈
(

1

1+rS
, rC
1+rC

)

then by Lemma 1 the determinant of J(SBb, CRb) is negative and thus one of

the eigenvalues has a positive real component and the stalemate equilibrium is

not stable.

Appendix B: Direct Foreign Intervention

Let us rewrite the direct intervention dynamics of Eqs. 6:

SB′ = +fS

(

SB +
λS

fS

)

SR− hSCR · SB

SR′ = −fS

(

SB +
λS

fS

)

SR+ hSCR · SB (13)

CR′ = +fCCR · CB − hC

(

SB +
λC

hC

)

CR

CB′ = −fCCR · CB + hC

(

SB +
λC

hC

)

CR

Furthermore let us define AS ≡ λS

fS
and AC ≡ λC

hC
. The stalemate equilibrium

of these equations is denoted with a subscript fi (“foreign intervention”) and

we present them below.

SBfi =
SBb

2
−

AS

2
+

AC −AS

2(rSrC − 1)
+

√

(

SBb

2
−

AS

2
+

AC −AS

2(rSrC − 1)

)2

+
rSrCASS

rSrC − 1

(14)

SRfi = S − SBfi (15)

CBfi =
SBfi +AC

rC
(16)

CRfi = 1− S − CBfi (17)
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(SBb is the value at stalemate of the variable SB in the basic model, Eqs. 5.)

To derive these expressions we first write the analog of Eqs. 11–12:

SB′ = +fS(SB +AS)(S − SB)− hSCR · SB (18)

CR′ = +fCCR(1− S − CR)− hC(SB +AC)CR (19)

Solving Eqs. 18–19 for the stalemate equilibrium root results in two equations

fS(SB +AS)(S − SB) = hSCR · SB (20)

fC(1− S − CR) = hC(SB +AC) (21)

Solving Eq. 20 for CR and substituting into Eq. 21 produces a quadratic in SB.

Solving for the positive root of that quadratic yields the expression for SBfi in

Eq. 14. Substituting SBfi into Eq. 21 gives CBfi in Eq. 16. Similarly to the

basic model, it is possible to exclude cycles, as follows.

Proposition 2. The set of Eqs. 6 does not have limit cycles.

Proof. We will work with the two independent Eqs. 18 and 19.

Let

w(SB,CR) =
1

(SB +AS)CR(1 − S − CR)
.

Both the system and w are smooth on the set (0, S)× (0, 1− S).

wSB′ =
fS(SB +AS)(S − SB)− hSCR · SB

(SB +AS)CR(1− S − CR)

=
fS(S − SB)

CR(1− S − CR)
−

hS

(1− S − CR)

(

1 +
AS

SB

)

−1

wCR′ =
fCCR(1 − S − CR)− hC(SB +AC)CR

(SB +AS)CR(1− S − CR)

=
fC

SB +AS

−
hC(SB +AC)

(SB + AS)(1− S − CR)
.

Note that 1−S−CR = C−CR > 0 in the strictly positive quadrant. Therefore,

∇ · (fw) =
−fS

CR(1− S − CR)
−

hS

(1− S − CR)
(−1)

(

1 +
AS

SB

)

−2
−AS

SB2

+ 0−
hC(SB +AC)

(SB +AS)(1 − S − CR)2
< 0.
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Before proceeding to examine the stability properties of the victory equilib-

rium and the stalemate equilibrium, we note there are two other equilibrium

points to the system defined by Eqs. 6: CR = 0, SB = −λS

fS
and an equilibrium

similar to Eqs. 14–17, but with SBfi the negative root of the quadratic that

produced Eq. 14. Because both of these equilibria consist of negative values,

which cannot be realized, we do not analyze them further. We next show that

the victory condition defined in corresponds to the stability conditions for the

equilibria points.

Theorem 3. For the system of differential equations defined by Eqs. 13, the

Blue victory equilibrium (CR = SR = 0) is stable if and only if rC−AC

1+rC
< S.

Proof. We first compute the Jacobian of the right hand size of differential equa-

tion defined in Eqs. 18–19

Jfi(SB,CR) =

(

fS(S − 2SB −AS)− hSCR −hSSB

−hCCR fC(1− S − 2CR)− hC(SB +AC)

)

For the Blue victory equilibrium (SB = S,CR = 0), the characteristic polyno-

mial is

(−fS(S +AS)− λ)(fC(1 − S)− hC(S +AC)− λ) = 0.

The first eigenvalue, −fS(S+AS), is always negative and the second eigenvalue,

fC(1− S)− hC(S +AC), is negative if rC−AC

1+rC
< S. Writing out this condition

in terms of the direct foreign intervention parameter λC = AChC produces the

condition: λC > fC(1− S) + hCS.

Theorem 3 provides a necessary condition for Blue victory. We have not

been able to prove the stability characteristics for the stalemate equilibrium

analytically, which would provide the sufficient conditions for Blue victory. This

is given in Conjecture 1 and extensive numerical experimentation makes us

confident that this conjecture does hold.

Conjecture 1.

The stalemate equilibrium defined in Eqs. 14–17 is stable if and only if rC−AC

1+rC
>

S.
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Appendix C: Opportunistic Population

We next show that victory is the only possible outcome of the opportunistic

population model.

Theorem 4. The following four statements hold for the system of differential

equations defined by Eqs. 7:

• The equilibrium CR = SB = 0 and S = 1

2
is never stable.

• The Blue victory equilibrium (CR = 0 and SB = S = 1 ) is always stable.

• The Red victory equilibrium (SB = S = 0 and CR = 1) is always stable.

• The stalemate equilibrium defined in Eqs. 8–10 is never stable.

Proof. We first compute the Jacobian of Eqs. 7

Jop(SB,CR, S) =







fS(S − 2SB)− hSCR −hSSB fSSB

−hCCR fC(1− S − 2CR)− hCSB −fCCR

α α −2α







A solution (SB∗, CR∗, S∗) to the differential equation is stable if the three

eigenvalues of Jop(SB
∗, CR∗, S∗) have negative real parts. By inspection the

equilibrium with (SB∗, CR∗, S∗) = (0, 0, 1
2
) is not stable for any parameter val-

ues.

Blue Victory

For the equilibrium (SB∗, CR∗, S∗) = (1, 0, 1) the characteristic polynomial is

(−hC − λ)(λ2 + λ(2α+ fS) + αfS) = 0.

The first eigenvalue, −hC , is always negative and the second and third eigen-

values are always negative by appealing to the quadratic formula for the second

term.

Red Victory

For the equilibrium (SB∗, CR∗, S∗) = (0, 1, 0) the characteristic polynomial is

(−hS − λ)(λ2 + λ(2α+ fC) + αfC) = 0.
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The first eigenvalue, −hS , is always negative and the second and third eigen-

values are always negative by appealing to the quadratic formula for the second

term.

Stalemate

Substituting the equilibrium points Eqs. 8–10 into the Jacobian yields

Jop(SB
∗, CR∗, S∗) =







−
fSrC

2+rS+rC
− hSrC

2+rS+rC

fSrC
2+rS+rC

− hCrS
2+rS+rC

−
fCrS

2+rS+rC
−

fCrS
2+rS+rC

α −α −2α







To calculate the eigenvalues, we need to find the roots of the characteristic

polynomial g(λ) = det (Jop(SB
∗, CR∗, S∗)− λI). Because limλ→∞ g(λ) = −∞,

if g(0) = det (Jop(SB
∗, CR∗, S∗)) > 0, then by the Intermediate Value Theorem

there must be a positive eigenvalue and the stalemate equilibrium must be

unstable. We will now show that this is the case for all possible parameter

values. Computing the determinant:

det (Jop(SB
∗

, CR
∗

, S
∗)) =

α (−2fSrCfCrS + hSrCfCrS + fSrChCrS + fSrCfCrS + fSrCfCrS + 2hSrChCrS)

(2 + rS + rC)2

=
αrSrC (hSfC + fShC + 2hShC)

(2 + rS + rC)2
> 0.

Therefore there will always be a positive eigenvalue associated with the stale-

mate equilibrium defined by Eqs. 8–10, and so it cannot be stable.
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